SYNC&SHARE SOLUTION FOR MASSIVE MULTIMEDIA DATA

Maciej Brzeźniak, Krzysztof Wadówka, Paweł Woszuk HPC Department

> Maciej Głowiak, Maciej Stróżyk New Media Department

- Context + massive multimedia data challenge
- Solution
- PSNC & BOX: who we are, why we are doing this
- Future work (work in progress)
- Observations

Context

CONTEXT:

- PROJECT FOCUS:
 - cutting edge tools for the next generation of immersive media

spın dıgıtal

XIIIII

MARCHÉ DU FILM FESTIVAL DE CANNES

NORRKÖPING VISUALIZATION CENTER

• BASIS:

VR and other immersive media may disrupt the entire media industry
Quality of experience of VR media has to be improved

CONTEXT: (MMERSIFY

DETAILED GOALS:

• (1) develop advanced video compression technology tailored for the needs of the VR video enabling delivering and display the huge files that will appear as a result of increased resolution, frame rate and better image formats.

(2) allow the widespread of immersive content, and facilitate its distribution and exhibition

by supporting multiple devices and environments such as PC- and mobile-based head mounted displays, multi-display systems, and dome, immersive cinemas and deep spaces.

(3) allow content creators to **produce highly personalized** content

with seamless interactivity by developing the required tools to combine high quality video, 2D/3D CGI, and interactive elements.

MASSIVE MULTIMEDIA (MM) DATA

- OVERALL DATA MGMT CHALLENGE:
 - growing volume: PetaBytes
 - pressure for performance: GB/s, IOPS
 - user expectation for ease of use

- MM DATA MGMT CHALLENGE: 4kVIDEO uncompressed:
 - volume:
 - ~200MB / frame, 60fps:
 - II GB/second 703 GB/minute 41,2 TB/hour
 - data flow:
 - content produced at PSNC (Poznań)
 - codecs developed and tested at Spin Digital (Berlin)

EXPECTATIONS:

- SEAMLESS AND EASY DATA EXCHANGE
 - multiple iterations of the worklow
 - ad hoc data access -> filesystem like access
 - the less manual work the better
- ROBUSTNESS:
 - with so many files (>200k / hour) we can't tolerate failures in copying
- PERFORMANCE:
 - should enable running tests of codecs without waiting the hours for access

The solution

Seafile WHAT IS SEAFILE?

- Specialised solution designed for sync & share
 - reliable data model, synchronisation algorithm
 - effective low-level implementation (C), proper data model
- **Backends** supported: •
 - Filesystem, NFS, etc.
 - S3, Swift / Ceph

FOCUS ON PERFORMANCE, AND RELIABILITY

Source: http://www.fastcarinvasion.com/must-see-moment-tractor-crosses-way-racing-car/

SEAFILE SYNC MECHANISM: SNAPSHOT-BASED (NOT PER-FILE VERSIONING)

SEAFILE SYNC MECHANISM: ONLY DELTAS INCLUDED IN COMMITS, CONTENT DEFINED CHUNKING ALGORITHM USED FOR DEDUP

LOAD-BALANCED SETUP 5-Seafile

Architecture:

- Load-balancer
- Seafile servers
- Storage back-ends:
- Memcached
- MySQL/Maria DB

- Seafile application servers work independently
- They share minimum information through memcached

SEAFILE PERFORMANCE TEST (2016)

SPEED	Seafile [GB/s]	theOther [GB/s]
5xIGB file upload	0.17	0.11
5xIGB file download	0.29	0.71

LARGE FILES *)5 GB file

SEAFILE PERFORMANCE TEST (2016)

SPEED	Seafile [files-dirs/s]	theOther [files-dirs/s]	difference
Client I: upload	627	27	23x
Client 2: download:	940	43	22x

SMALL FILES *)

- Linux kernel source v. 4.5.3
 - 706 MB of data
 - 52 881 files
 - 3 544 directories

SEAFILE 5. COMMUNITY, SINGLE 2-CPU SERVER, I 20-DISK FC ARRAY, EXT4

SEAFILE VS OTHERS SMALL FILES PERFORMANCE TEST (TIME)

test	2016 test single Seafile server, very small files - Linux kernel source		2017, clustered Seafile 100kB files
SPEED	Seafile [files-dirs/s]	theOther [files-dirs/s]	clustered Seafile [files-dirs/s]
Client I: upload	627	27	400
Client 2: download:	940	43	3400

BACKENDS FOR **box**

Having paid IBM already for GPFS use them for sync & share?

Use Ceph as everybody does ;) ?

UPLOAD RESULTS [FILES/S] SMALL FILES TEST (45K × 100KB FILES)

GPFS is up to 1.5-3x faster than Ceph:

3x replication in Ceph + intermediate storage step at Seafile server's back-end

DOWNLOAD RESULTS [FILES/S] SMALL FILES TEST (45K X 100KB FILES)

Ceph faster for <64 threads (caching effect? lots of RAM)

GPFS up to 2x faster than Ceph for >64 threads

PSNC Seafile

No intermediate storage of data at Seafile back-end while download?

UPLOAD RESULTS [MB/S] LARGE FILES TEST (4,4GB FILES)

GPFS is up to 3x faster than Ceph for large files 3x replication in Ceph?

DOWNLOAD RESULTS [MB/S] LARGE FILES (4,4GB FILES)

GPFS performance is comparable to Ceph (differences within 10%)

- BOX is a country-wide sync&share service by PSNC:
 - large user base: not only based on a single institution
 - millions of files served
- We applied BOX to the IMMERSIFY use-case:
 - use a public instance of the service
 - and a Seafile client tools: incl. web, desktop and drive

Seafile WHAT IS SEADRIVE:

- Virtual filesystem client:
 - synchronises on-demand only these data that are accessed by the user
 - data ,cached' on the user system and the used as local
 - Similar to project Infinity of Drobpox
- As of now no other on-premise sync&share solution can make it

WHY SEADRIVE FOR IMMERSIFY?

- Ease of use:
 - hides the complexity of the workflow (these many files to be exchange)
 - eliminates need for copying the data manually / explicitly from PSNC to the Spin Digital site
 - provides good integration with other clients: Web, desktop
- Robustness:
 - Seafile will ,,stubbornly'' synchronise the files down to the client
- Performance:
 - overall Seafile performance proven in our laboratory tests

PSNC & BOX: who we are, why we are doing this

- POLISH NREN & SERVICES PROVIDER

PIONIER NETWORK

- 8000 kms of own fibers
- 3500+ public institutions
- links to Geant, AMS-X, CERN
- Archival Storage Services:
 - **I4+PB** of space, 10 DCs
 - 300+ client institutions
 - Based on ,,National Data Storage'' software developed in-house
 - **Cloud computing services:**
 - several 1000s of servers in 21 DCs
 - I000s of users

IN THE EU ACADEMIC NETWORKS

- GEANT
 - Connectivity:
 - multiple 10/100 Gbit lines
 - Collaborations: GN4 project:
 - software defined networks, infrastructure
 - multi-media, e-learning
 - cloud services incl. brokerage
 - Collaborations:
 - task forces: media, NOC etc.
 - special interest groups: cloud services & software stacks

OBSERVATIONS

FIRST BATTLE-FIELD EXPERIENCE

- Seafile + Seadrive is better than NFS server:
 - works using the Web protocols, no firewall passes
 - better more fine-grained access control and authorisation
- Throughput is OK, latency...:
 - Throughput: we can sustain 10 Gib/s link with massive files
 - Latency: OK for codes (local buffer helps), not OK for interactive players
- Overall the workflow is very simplified
 - We use data ,as-is' through whatever client: drive, web, desktop
 - Spin Digital can access ad-hoc any arbitrary dataset
 - Content updates or new content is propagated automatically

FUTURE WORK

Perform more synthetic benchmarks

- Basic tools such as iozone, fio (filesystem interface)
- Build 4k video / coding process specifics tools or use codecs as the benchmark
- Analyse latency and throughput + the efficiency of sync & share algorithm

Improve configuration

- TCP/IP tunning
- Tunning Seafile parameters
- Increase the scale of the tests:
 - More sites perhaps
 - Longer and shorter distance (now it's ~280km Poznań-Berlin)

HIGH-LEVEL OBSERVATION

- We believe that running services on premises still makes sense
 - The functionality software available to us makes it possible to ,compete' with public cloud services (Seafile's Seadrive vs Project Infinity of Dropbox)
 - Performance achieved can't be possible reached using public clouds
 - Budget-wise, using public clouds could be unaffordable
 - We as NRENs and nerds :)
 and thus we have potential and willingness
 to work with users at the case-by-case basis

EOF; HANK YOU;