

TNC'18 Networking Conference, Trondheim, Norway

An Indicator Scoring Method for MISP Platforms

A. Dulaunoy⁺, A. Iklody⁺, S. Mokkadem⁺, G. Wagener⁺ and

C. Wagner*

Computer Incident Response Center Luxembourg – CIRCL

Fondation RESTENA

Introduction

- New threats appear and disappear on daily base
 - Share information about actual threats and work collaboratively
 - Decrease resolution time
- Collaboration and information sharing are key element in CSIRT world
 - Sharing information is a critical point
 - Sensitive data it may include respectively the authenticity of information
 - Joint-efforts to handle a problem have direct impact on reaction time and resources.
 - The appearance of information sharing platforms confirms this trend
- Indicator Scoring model applied to the open source threat intelligence platform MISP
 - MISP permits private or public IT-communities to share their information, IoCs, malware and other existing threats.

Information sharing

- Successful cyber incident response is information sharing in its different forms
 - Trusted third parties, email lists of CERTs (Computer Emergency Response Teams), platforms....
- Case studies on information sharing on problems and legal aspects showed
 - Information sharing remains a group or community activity
 - Restricted access due to commercial service approaches
 - Need for accurate information sharing practices
 - Low false positive rates and correctness of data
- Information sharing is related to a lot of challenges
 - Added value of shared data to knowledge management
 - What kind of data IP-addresses, protocols, timestamps, etc
 - Privacy
 - Quality control approaches
 - From Netflow to information
 - Reduction techniques, s.a. Aggregation , hashing....
 - Beside technical challenges , find volunteers to share data
 - For implementing the scoring method \rightarrow MISP

Background information on MISP

- MISP is a collaborative open-source project that continuously evolves by community-driven effort to share
 - All kind of threats and all kinds of indicators of compromise
 - But also others such as financial indicators as for example bank accounts of money mules, which were abused
- The data model implemented in MISP for sharing information is simple
 - User can decide on the granularity of information to
 - Set the sharing level (f. ex. organisation only, community only...)
- MISP is designed to be peer to peer, where multiple instances can exchange information with each other
 - The synchronization protocol in MISP resulted from a trial-and-error approach
 - Main criteria were efficiency, accuracy and scalability

Background information on MISP

- Sharing information in MISP
 - Shared information in MISP is called event
 - Having a list of attributes (destination IP addresses, file hashes)
 - Currently 140 types are available in MISP software
 - An attribute is tuple (category, type, value)
 - The more an event is also linked with contextual information s.a date, threat level, description, organisation...
 - To avoid time-consuming form filling it has integrated
 - Free text importer that allows users to copy and paste raw data into a single field and analysed to extract attributes
 - Taxonomies for the filtering of events (classification scheme)
 - Facilitate description of IoCs and other relevant information.
 - Machine-tag approach with triple-tags
 - 47 different taxonomies (law enforcement, CSIRT, intelligence...

Sightings

- Sightings is a feature for users, scripts or IDS to share information about a attribute
 - Report information about presence , false positive, expiration dates...
 - Provide more credibility to an attribute and can be used for prioritizing or decaying attributes

Example

• Visual representation of the occurrences of sightings and false-positive for one week

- Observation
 - False positives were detected \rightarrow spam campaign
 - Larger proportion of sightings than average
 - Informs security experts about actual threat
 - Indicates deeper investigation
- Sightings provide input for decaying attributes

Scoring IoCs

- Why scoring and decaying Indicators
 - Challenges:
 - Correctness of information and handling attributes
 - Get decay time for attribute/indicator
 - Example of MISP community for private sector
 - 1 531 users from 761 different organisations
 - 8 101 shared events
 - 1 003 908 attributes until early December 2017
 - User objectives change from user to user
 - Built of non-homogeneous crowd with different objectives
 - Unwanted false positives \rightarrow data to be correct and reliable
 - Correlation of attributes with other threat actors
 - => Need for a correct and reliable source of historical data

Scoring IoCs

- The lifetime of attributes is not homogeneous
 - Example: hosts of machines change, IP addresses changed or cleaned, domain names traded...
 - \rightarrow each attribute has its own decay function
- The scoring of attributes over time considers factors like
 - Confidence of its source
 - The taxonomies attached to it
 - → Giving the initial value of an indicator's life cycle
- The decay rate represents
 - Speed at which the overall score is decreasing over time.
 - Example of an IP address
 - Decay rate of IP should be low for the first hours, but steadily increase since threat still ongoing
 - IP address is shared among a community targeted by the threat actor
 - → Members take measures, e.g. blocking IP address

ightarrowThe attack becomes ineffective forcing threat actors to use other IP addresses

Scoring IoCs - Examples

Attribute for compromised IP address in botnet

- Destination IP of compromised webserver hosting exploit kit distributing malware
- Clean-up started
 - Grace time of ISP 1 week
- IP address added to blacklists
 - 48 hours generally
- Threat actor may notice detection[§]
 - Move to another one

- By applying the model it can be observed that
- \rightarrow Score halved after < 2 days

Scoring IoCs- Examples

- Hash of Malware
 - Observation that score of a file-hash not as volatile as IP
 - The attribute is observed for 2 month
 - \rightarrow Slow decay only

TNC'18 Networking Conference, Trondheim, Norway – C. Wagner

Experimental evalution

- Evaluations on time period and decay speed
 - Phishing dataset with short lived URLs from phishing campaigns
 - For CSIRT/CERTs it is critical to take down compromised server quickly
 - Interested in end-time of attribute by applying scoring model

Time span	May 29, 2017 → May 3, 2018
Number of attributes	437027
Number of sightings	5338535
Mean (μ) of sighting / attribute	12
Stdev (σ) of sighting / attribute	58

Experimental evaluation

- One week representation
 - CDF indicates ~90% falls within 5 days
 - Consider end-time 5 days

This information can be used in IDS to select rules

Experimental evaluation

- Evaluation with IDS table supporting the model
 - A subset of the dataset reused on IDS
 - Check evolution of its table
 - At start
 - Load of table is higher than average
 - No IOC expired yet
 - Later

Deletions reduce load to balanced

- Accuracy of entry removal in IDS
 - 50% removed correctly
 - Motivation to further develop the scoring model

Conclusion

- Information sharing has become an integrated part in the resolution of incidents
- MISP not only allows the sharing of information but also
 - Contribute useful add-ons by the community
 - Trusted environment
- Early work on scoring mechanisms for attributes only
 - Base score defined to combine these trust aspects
 - Scoring apporach to reflect lifetimes of attributes
- Demonstrated that decaying IoCs is a challenging task
- Future work includes
 - Evaluation and application of machine learning techniques
 - Exploration of game theoretical models in context of distributed information sharing.

QUESTIONS? THANK YOU!

Hack.lu is an open convention/conference where people can discuss about computer security, privacy, information technology and its cultural/technical implication on society.

Hack.lu Conference 16-18 October 2018 in Luxembourg

The model

score of an attribute before taking into account its decay

$base_score_a = weight_{tg} \cdot tags + \omega_{sc} \cdot source_confidence$

The score derived from the taxonomies is defined in equation (2), where **G** is the number of defined taxonomy groups and **T** the number of used taxonomy per group

$$tags = \frac{\sum_{j=1}^{j=G} \sum_{i=1}^{i=T} taxonomy_{i} * weight_{i}}{\sum_{j=1}^{j=G} \sum_{i=1}^{i=T} 100 \cdot weight_{i}}$$

The idea is to decrease the *base_score* over time. When it reaches zero, the related indicator can be discarded

$$score_a = base_score_a - \delta_a(T_t + T_{t-1})$$
 $score_a =$

$$score_a = base_score_a \cdot e^{-\delta_a t}$$

Final score

$$score_{a} = base_score_{a} \cdot \left(1 - \left(\frac{t}{\tau_{a}}\right)^{\frac{1}{\delta_{a}}}\right)$$