
Let a Thousand Filters Bloom:
privacy-preserving long-term collection of DNS queries

Roland van Rijswijk-Deij*, Matthijs Bomhoff†, Ralph Dolmans‡ 

*SURFnet / †Quarantainenet / ‡NLnet Labs



Introduction
• Privacy of DNS traffic between client and resolver 

currently has a lot of attention in the Internet 
community, e.g.: 
• DPRIVE working group in the IETF, standardised 

DNS-over-TLS 
• Deployment of DNS-over-TLS by e.g. 1.1.1.1, 

8.8.8.8, 9.9.9.9 and others (including SURFnet) 
• Upcoming DoH standard (DNS-over-HTTPS), 

which has a big push from the browser 
community

• Note the focus is on privacy of traffic in-flight



Elephant in the room

image © Jdcollins13@Flickr



Elephant in the room

• Resolver operators can still observe and collect 
DNS query traffic

• And they have legitimate reasons to do so 

• For example: to detect indicators of compromise 
in DNS traffic



Goal
• Privacy is a strongly held value at SURFnet 

• Yet we also need to ensure the security of our network 
and the users on it 

• Simply logging DNS queries on our resolvers is 
unacceptable

• We want to take strategic and tactical decisions based on 
the presence of DNS queries associated with indicators of 
compromise, so we are not interested in queries per user 

• So we asked ourselves: 

How can we detect if certain DNS queries were performed, 
while respecting the privacy of users?



Approach

• We worked with Dutch security company 
Quarantainenet to develop a possible solution 

• We want to use Bloom filters as a privacy-
enhancing technology to record all DNS queries 

• This talk explains what Bloom filters are, how we 
intend to use them, and what we have learned so 
far



What is a Bloom filter?
• Originally designed in 1970 as a space-efficient 

way to optimise indexing of data 
• Think of Bloom filters as unordered sets of unique 

elements with probabilistic membership tests 
• For a Bloom filter 𝐵 and an element 𝑛, if we  

test membership:

n 2 B?
no → 𝑛 is guaranteed not to be in 𝐵 

yes → 𝑛 is highly likely in 𝐵, with a 
   small probability 𝑝ε of this being  
   a false positive



Bloom filter in pictures
www.example.com

a029e8a9 c3faa9f8 cb745caa 8136503e 3a6dccaa c9f4c130 574c0e58 7235970e

(set of) hash function(s)

index #1 index #2 index #3 index #4 index #5 index #6 index #7 index #8

set bits to 1 in bit array using indices



Bloom filter in pictures

(image courtesy of Quarantainenet)

0

0

0

0

0

0

0

0

1

1

1

legit.org

evil.com

1

1

1

true-negative.name

false-positive.net



Bloom filter parameters
• Tune to achieve a certain (low) false positive rate 

at a reasonable filter size 

• Parameters: 
• Number of hash functions 𝑘 → number of indices 
• Size of bit array 𝑚 
• Expected number of distinct elements 𝑛 

• The formula below approximates the probability of 
a false positive 𝑝ε:

p✏ ⇡ (1� e�
kn
m )k



False positive rate
CHAPTER 2. BACKGROUND

0 20 40 60 80 100 120

−1
5

−1
0

−5
0

Bloom Filter False Positive Rate: n = 300K

Filter Size in MBit (m)

lo
g1

0(
p)

 −
 F

al
se

 P
os

iti
ve

 R
at

e

k = 10
k = 20
k = m/n ln(2)

(a) False positive rate for n = 3 · 105.

0 20 40 60 80 100 120
−7

−6
−5

−4
−3

−2
−1

0

Bloom Filter False Positive Rate: n = 3M

Filter Size in MBit (m)

lo
g1

0(
p)

 −
 F

al
se

 P
os

iti
ve

 R
at

e

k = 10
k = 20
k = m/n ln(2)

(b) False positive rate for n = 3 · 106.

0 20 40 60 80 100 120

−0
.5

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Bloom Filter False Positive Rate: n = 30M

Filter Size in MBit (m)

lo
g1

0(
p)

 −
 F

al
se

 P
os

iti
ve

 R
at

e

k = 10
k = 20
k = m/n ln(2)

(c) False positive rate for n = 3 · 107.

Figure 2.10: A series of plots showing the influence of k and m on the false positive rate, given n.
The false positive rate is displayed on a logarithmic scale.

2.4.3 Properties

We discussed the theory of Bloom filters in Section 2.4. Bloom filters introduce constraints, but
also benefits. We refer to a set of constraints and benefits as properties. The following properties
follow from the Bloom filter theory [37].

1. The original input data is not stored. Therefore, what queries were performed cannot be
trivially recovered from the Bloom filter.

2. Queries can only be looked up using an exact value. Therefore, enumeration of stored
information is not possible.

3. Bloom filters only require a small amount of memory to store a large number of queries, and
hence scale well.

4. Bloom filters can be exported and stored elsewhere for a long time. Therefore, lookups can
be made in history.

Privacy-Friendly Threat Detection using DNS 13



Privacy properties
• Filters do not store original query names and are 

non-enumerable; lookup only possible if you 
know exactly what you are looking for 

• By mixing queries from multiple users in a single 
filter, tracking individual users becomes even 
hard(er) 

• We can combine the state of filters with the same 
parameters into a new, aggregated filter (with 
possibly a higher false positive probability, but data 
over a longer period and/or for more users 
combined)



Other considerations

• Privacy risk: if I know a query that unambiguously 
identifies a certain user (e.g. name of personal 
server), I can still track them, but impossible to 
correlate with other queries if more than one user 
in the filter 

• Bloom filters have additional benefits: 
• Space efficient (filters have a fixed, reasonable 

size) 
• Time efficient (lookups are fast)



What to store?

• The most important design decision is what 
information from a query to store 

• We considered the following query attributes: 
1. Full query name (canonicalised) 
2. Individual labels in a name (e.g. 'www', 

'example', 'com') 
3. Queried type
4. Response data 

• For the moment, we are focussing on 1 and 2



Distributing users over filters

• The second important design decision is how to 
distribute users over filters

• We want to learn if queries were made by users 
from certain institutions (again, not interested in 
individuals) 

• Two options: 
1. Separate filter for each institution 
2. One big filter, and prepend institution name to 

data inserted into filter



Distributing users -- numbers (1)
• Ideally, we want to collect queries per hour; so 

how many distinct queries do we get?

0.0e+00

3.0e+06

6.0e+06

9.0e+06

1.2e+07

May 14 May 21 May 28
Time

U
ni

qu
e 

D
om

ai
n 

N
am

es

Number of Unique Domain Names over Time

#distinct query names

#distinct query names 
with /16, /20 and /24 

prefix prepended



Distributing users -- numbers (2)
• Also, we would like to aggregate from hourly to 

daily filters, while maintaining a reasonable false 
positive rate

0e+00

2e+07

4e+07

6e+07

May 14 May 21 May 28
Time

N
um

be
r o

f U
ni

qu
e 

D
om

ai
n 

N
am

es

Number of Unique Domain Names per Day over Time

#distinct query names

#distinct query names 
with /16, /20 and /24 

prefix prepended



Work in Progress
• We have a master student who is building a 

working prototype to test the use of Bloom filters 
for detection of indicators-of-compromise (IoCs) 
in DNS queries 

• His main focus: 

• What IoCs can we detect using this approach, 
but also: what can't we detect? 

• Designing an architecture for filling and 
querying filters (e.g. how do we group users, 
how do we store and query filters?)



Prototype design
• Based on measurements and experiments, we decided to use 

a single large(r) Bloom filter to store all query information 

• Advantages: (very) space efficient, and single set of 
parameters so filters can be combined for aggregation 

• Disadvantage: a single user can pollute the filter with random 
query names and raise the false positive rate 

• We will store: 
• <institution>+<full query name> 
• <institution>+<individual labels from FQDN> 
• <full query name> 
• <individual labels from FQDN> 
• (possibly also <prefix>+<(parts of) FQDN>)



Prototype design
My student, Gijs Rijnders, who is 
working on our prototype, was one 
of the winners of the TNC Poster 
Pursuit, so go see his poster for 
more info on the prototype!  
 
(also: vote for him 😉)



Testing the prototype
• We will deploy Unbound with Bloom filter 

integration on SURFnet's production resolver 
infrastructure 

• Relatively busy resolvers (order of 5-10k queries 
per second), that between them see roughly 
150-200k unique client IPs per day 

• Ideally, we want to group by customer, challenge: 
we have ±200 customers 

• Goal is also to see how well all of this scales



Use cases
• The master student will look at three use cases in 

particular: 

1. Detection of (high value) IoCs that we receive 
from the Dutch National Detection Network 
(IoCs received from, a.o., intelligence agencies) 

2. Detection of queries for "DDoS-as-a-Service" 
providers (aka Booters/Stressers) 

3. Analysis of blacklist hits from our e-mail filtering 
service



Open source

• Bloom filter library we use developed as open 
source by Quarantainenet, funded by SURFnet  
(BSD 3-clause license) 

• SURFnet also provided funding for integration in 
Unbound (will be DNSTAP) in collaboration with 
NLnet Labs 

• Expecting to release prototype code somewhere 
this year, no definitive date yet  
(come talk to me if you would like to play with it)



Conclusions
• We set out to find a privacy-conscious way to 

collect information on DNS queries, with the goal 
of looking for certain queries for security purposes 

• In collaboration with Quarantainenet and NLnet 
Labs, we are implementing a solution based on 
Bloom filters, that will be released in open 
source

• We expect to publish results of our prototype 
experiments at the end of this summer (late 
August)



F

L

✉

nl.linkedin.com/in/rolandvanrijswijk

@reseauxsansfil

roland.vanrijswijk@surfnet.nl

Thank you for your attention!
Questions?

acknowledgements: with many thanks to my student,  
 Gijs Rijnders for supplying nice graphs :-)


